
ADDING NON-LINEAR CONTEXT TO DEEP NETWORKS

Michele Covell, David Marwood, Shumeet Baluja

Google Research, 1600 Amphitheatre Parkway, CA 94043

ABSTRACT
Enormous success has been achieved with deep neural networks con-
sisting of standard linear-convolutions followed by simple non-linear
mapping functions. In this paper, we add easily-computed non-linear
local and global statistics to deep architectures, augmenting the in-
formation available at each layer. This additional information is then
used in an identical manner to current processing. The summary
statistics, which can be as simple as calculating within-channel vari-
ance, introduces little run-time computational overhead and can be
instantiated with few extra parameters. All standard training proce-
dures can be used without modification for training these augmented
networks. We show, through extensive testing with ResNet on Im-
ageNet, performance improvements across a wide range of network
sizes. Additionally, we provide a detailed study of where within the
deep networks these statistics are most effective.

Index Terms— Deep neural networks, Non-linear layers, Image
classification, ResNet

1. INTRODUCTION

Modern deep neural networks have convincingly shown the power of
linear-layer computations followed by non-linearities. The convolu-
tions and global average pooling common in vision tasks [1, 2] are
limited to linear transformations. In this paper, we provide a sim-
ple method to augment existing convolutional and global-average-
pooling layers with non-linear information inside the layer. We ex-
periment with simple non-linear summary statistics on ResNet [3, 4]:
standard deviation, variance, and L1 distance. Despite their simplic-
ity, they both improve performance in terms of classification and add
little in terms of extra parameters or computation.

We use these three summary statistics in two novel layers that
can be trivially added to the existing layers of any deep network:

• NLConv, a non-linear contextual layer, similar to a convolu-
tional layer, for a local measure of spatial variation.

• global NLPool, similar to NLConv but giving a global mea-
sure of spatial variation.

In the next section, we briefly review related work and provide
the necessary details of ResNet, the architecture on which we ran our
experiments. Section 3 introduces our two layers. Section 4 presents
detailed results of adding these non-linear computations to various
parts of the ResNet architecture. Ablation studies are also shown.
Section 5 provides a summary and directions for future work.

2. RELATED WORK

Non-linearities, like ReLU and tanh, are the main sources of ex-
pressive power for deep networks [5], but most of them are simple
element-wise functions that treat each spatial sample separately. The
most notable exceptions to this are network elements that feed spa-
tial context into soft switches, such as LSTMs [6], transformers [7]

and squeeze-excite blocks [8]. The softmax used in transformers,
after the dot-product of the query and key vectors and before the
weighted averaging of the value vector, change what would other-
wise be a quadratic scaling of the input into a soft switch. Similarly,
over much of their operating ranges the sigmoids in the squeeze-
excite blocks and LSTMs act like soft switches on the input chan-
nels (for squeeze-excite) or on the output-gate’s activation vector
(for LSTMs). In contrast, the computation in the layers we will in-
troduce provide a quadratic (or L1) rather than soft-switch response
to the values in the spatial context.

Kernel-based convolutional networks [9, 10] also use non-linear
combinations of local values. Like classical SVMs [11], kernel-
based convolutions use non-linear functions to caste the decision
boundary into a higher dimensional space allowing for increased
separation between classes. This introduces numerous parameters
into the training process, since each support vector is learned (in-
stead of being taken from the training set as was done with classical
SVMs). In contrast, our approach uses classical statistical measures,
giving each network direct access to a measure of per-channel spa-
tial variability. The only parameters added by our approach are those
used to mix these per-channel statistics with the regular linear con-
volution (or fully-connected) outputs.

For our exploration, we use ResNet [3, 4] (Figure 1), a well-
studied DNN architecture, on ImageNet data [12]. The Resnet net-
work starts with a stem, increasing the channel depth from 3 (RGB)
to 64 channels. This then feeds into 4 stages, each stage starting with
a “projection block” (Figure 2-a) that reduces the spatial resolution
by 2 as well as (typically) increasing the number of channels by a
factor of 2, followed by “identity blocks” (Figure 2-b) which output
the same shape (spatial resolution and channels) as was input. Both
block types employ two paths, main and shortcut, that branch at the
start of the block and are element-wise added at the end of block. In
the projection blocks (Figure 2-a), the shortcut path includes a con-
volution layer that changes the spatial and channel sizes to match the
block’s output. In the identity blocks (Figure 2-b), the shortcut path
is simply an identity path. As shown in Figure 3, the main path of
each block has 2 or 3 convolutional layers (depending on the ResNet
size). The output channels are each fed into a global average pool
which is then fed into the final fully connected classification layer.

3. NON-LINEAR CONTEXT

We explore two different types of non-linear context. Next, we in-
troduce a non-linear, translation-invariant measure of context for use
with Conv2D layers. In Section 3.2, we introduce global non-linear
pooling that can be used in conjunction with global average pooling.

3.1. NLConv: Non-Linear Convolution Layers

With NLConv, our goal is to create a layer that provides local non-
linear context, in the same way that an N ×N depth-separable con-



Table 1. Non-linear local metrics tested in NLConv
(a) centered local mean (b) sliding local mean

(1) variance σ2(x, i, j) = ReLU(∆(x2, i, j)) σ̃2(x, i, j) = ReLU(m(x20, i, j))
= ReLU(m(x2, i, j)− y2i,j)

(2) standard deviation σ(x, i, j) =
√
σ2(x, i, j) σ̃(xi,j) =

√
σ̃2(x, i, j)

(3) L1 to mean L1(xi,j) = ∆(|x|, i, j) L̃1(xi,j) = ReLU(m(|x0|, i, j)

• m(f(x), i, j) = 1
N2

∑(N−1)/2
k=−(N−1)/2

∑(N−1)/2
l=−(N−1)/2

f(xi+k,j+l)

is the local mean of f(x) centered at i, j.
• ∆(f(x), i, j) = 1

N2

∑(N−1)/2
k=−(N−1)/2

∑(N−1)/2
l=−(N−1)/2

f(xi+k,j+l − yi,j)

is the local mean of f(xi+k,j+l− yi,j). Note that the local mean is subtracted
before the function f() is applied. Also, note that when the index to x changes
within the window, the location used for the local mean y does not change,
making it a “centered” local mean.

• yi,j = m(x, i, j) is the local mean for x centered at i, j
• x0(i, j) = xi,j − yi,j is the difference between x and the

local mean for x as seen at i, j. Note that when the index to x0

changes, the location used for the local mean y also changes,
making it a “sliding” local mean.

• N is the size of the local averaging window.
• ReLU is the usual half-wave rectifier. We include the ReLU to

avoid errors in backprop.

Fig. 1. ResNet architectures.
All ResNets share the same general
structure but vary the numbers of
repetitions and channels within each
stage. ResNet-18 and -34 have fewer
channels than ResNet-50 and above.
ResNet-18 has only two blocks in each
stage (one projection and one iden-
tity — see Figure 2) while the larger
networks include more identity blocks
within each stage. The red portion is
the computation that is added in our
experiments with global NLPool.

Fig. 2. ResNets use (a) projection and (b) identity blocks.
In (a), the Conv2Ds marked with “↓ 2” downsample by two in x and y. The
red portions are the computation that is added in those experiments that use
NLConv on the shortcut path of the projection blocks.

volution [1] provides local linear context. We do this by first com-
puting depthwise non-linear metrics and then mixing using a depth-
only (1× 1) convolution. For the non-linear metrics, we experiment
with three simple statistical measures: standard deviation, variance
and L1 distance, see Table 1. In column (a) of Table 1, the com-
putations use a “centered” local mean, centered in the middle of the
accumulation window. Eq. 1-a and 2-a are local variance and stan-
dard deviation and Eq. 3-a uses a similarly centered local mean as
its reference. Column (b) uses a “sliding” local mean, that slides
around the accumulation window. This simplifies the computation
in Eq. 3-b, allowing us to first compute x0 and then use local non-
linear pooling to determine our non-linear context values. However,
this also results in the computation having a larger effective context;

Fig. 3. ResNet main paths are either (a) two (ResNet-18 and -34) or
(b) three convolutional-layers deep.
For the Conv2Ds that are marked as “strided”, these downsample by two
spatially when used in projection blocks but not when used in identity blocks.
In both (a) and (b), the red portions are the computation that is added in those
experiments that use NLConv on the main paths.

the value at i, j depends on x over a (2N − 1)× (2N − 1) window
due to the sliding N ×N mean computation.

These computations are all depthwise and are followed by a 1×1
Conv2D (with the appropriate strides), similar to a depthwise con-
volution, to form an NLConv layer (Figure 3). We found that in
ResNet, the most pronounced improvement comes from adding the
NLConv in parallel to the first Conv2D of each block (this will be
further discussed in Section 4.1). The outputs of the parallel layers
are then elementwise added.

3.2. Global NLPool: Non-Linear Global Pooling

In ResNet, the spatial outputs of the final stage are collapsed into a
single value per channel using global average pooling (Figure 1, top).
These average values are then combined using a fully-connected
layer to yield the final classification logits. We create a non-linear
equivalent to global average pooling, “global NLPool,” which uses
either variance, standard deviation, or L1 distance (column (a) of
Table 1 with N equal to the spatial dimension of the final layer and
sampled only once at the spatial center).



Fig. 4. Parameter exploration for NLConv within ResNet-50.

In our experiments, we place the global NLPool followed by a
fully connected layer (Figure 1, in red), in parallel with the global
average pool and its following fully connected layer and simply add
the two results. The only learnable parameters added by the addition
of NLPool are those in the final layer. Because the final layer is fully
connected, this increases the number of trainable parameters by 2%-
8% (depending on ResNet architecture). Nonetheless, because of
the simplicity of fully-connected computations, the inference-time
computational penalty is far below 1%.

4. EXPERIMENTS

We begin our experiments with the ResNet-50 network. The network
was trained and applied to 224×224 ImageNet inputs. For training,
we used SGD (momentum 0.9) on a global batch size of 4096, split
across 32 TPUs, using Tensorflow [13]. We used a standard training
regime: the learning rate used a linear ramp-up (up to 1.9 across 5
epochs), then a stepwise decay of a factor of 10 each 30 epochs.

All results in this section are based on the performance of three
separate training runs. In Figure 4, these results are summarized
using a “candlestick”: the single line goes from the worst to the best
of these 3 runs and the box goes from the average of the bottom
two runs to the average of the top two runs. In Table 2, the result is
shown as the mean error rate and its variability, across three separate
training runs. In Figure 5, due to the complexity of the figure, we
simply mark the mean accuracy for three separate training runs.

Figure 4-a shows our results when using the different non-linear
measures (Table 1).1 Local standard deviation (Eq. 2-a in Table 1)
clearly outperformed the other non-linear metrics. It also showed
significantly less training variability across runs. Due to space con-
straints, we will report the remainder of our experiments using this
standard deviation with a centered local mean.

Figure 4-b shows our results using the standard deviation (Eq. 2-
a) with different-sized contexts (values of N). Somewhat surpris-
ingly, both 3 × 3 and 5 × 5 contexts clearly outperformed larger
context windows. Since the 5×5 did slightly better than 3×3 across
all the different training runs, we use that context size for our subse-
quent NLConv experiments. Understanding why larger contexts did
not further improve performance is open for future study.

The global NLPool reduces the entire spatial dimensions on each
channel. In our studies across different sized ResNets with global
NLPool, using standard deviation gave a more consistent error-rate
reduction than either L1 or variance: both L1 and variance had at
least one run at each size network that failed to improve over the

1Figure 4-a does not show the Eq. 3-a due to the difficulty in implement-
ing that function within Tensorflow Keras layers.

baseline. Therefore, we only report on global NLPool using standard
deviation going forward.

Table 2 shows the performance improvement on a large number
of ResNet variants. Row (a) lists the error rate for the unchanged
network, along with the amount of computation required at inference
and number of parameters learned during training. Row (b) gives
the performance of ResNet with the additional global NLPool layer.
Row (c) adds an NLConv layer (5 × 5 context) in parallel with the
first Conv2D layer of each block’s main path (Figure 3, in red) as
well as to the projection block shortcuts (Figure 2, in red). Row (d)
uses both NLConv and global NLPool.

The most salient feature in Table 2 is that adding non-linear con-
text uniformly improves the accuracy of the unchanged ResNet ar-
chitecture, up to size 101, with no changes to the training process.
Looking in more detail, we see that global NLPool provided the
most consistent accuracy improvement; the reduction in the mean
error ranged from ∼2% (for ResNet-50 and ResNet-101) to ∼4%
(for ResNet-18 and ResNet-34). Interestingly, the 2–4% accuracy
improvement is obtained with under 1% increase in inference-time
computation. But why does the accuracy improve so much? We sus-
pect the global average pool on the 49 samples per channel (that is,
the 7 × 7 grid which feeds into the average pool) results in enough
information loss that even the large numbers of channels cannot fully
recover the information. Expanding the network to include standard
deviation here provides supplementary information about the within-
channel distributions. To ensure that it is not simply the number of
extra parameters that provided the benefits, we tested expanding the
inputs to this layer by the same amount using finer grain linear pools.
This did not improve accuracy; therefore, it is not simply the increase
in the parameters that accounts for the improvement. Rather, the
non-linear combination across spatial samples in the global NLPool
provides useful information to the final layer.

The usefulness of NLConv is more nuanced. For ResNet-18,
ResNet-34, and ResNet-50, NLConv consistently improve perfor-
mance, with an associated increase in inference-time computation of
only 8–10% (for ResNet-18 and -34). However, when the network
is as large as ResNet-101, NLConv has little effect (though NLPool
still has a significant improvement). We speculate that due to the
breadth of the network, there are already numerous pathways to con-
vey the equivalent of the NLConv statistics. In Subsection 4.2, we
conduct a finer-grained evaluation of which instances of the NLConv
provide the most improvement vs. computational cost.

4.1. Alternatives

In addition to the NLConv locations shown in Figures 2 and 3, we
report on 2 alternatives: adding an NLConv in parallel with the 7×7
convolution in the stem and adding NLConv to all the main-path
convolutions (not just the first).

We tried adding a NLConv in parallel with the 7 × 7 convolu-
tion in the stem of ResNet-50 (the bottom block in Figure 1) and
adding the outputs back to the original convolution outputs before
the stem’s local MaxPool. The advantage of this approach is that
non-linear context here results in only a minuscule computation in-
crease (0.04%). We experimented with standard deviations sizes
from 3×3 up to 15×15, across 3 independent trials per setting. In all
cases, the results were virtually indistinguishable from the unmod-
ified ResNet results. In the stem, there is a massive increase in the
representational size as the data goes from an image (224×224×3 ≈
151K values) to 112×112×64 ≈ 803K values. The full image can
be exactly recreated more than 5 times over in an unmodified ResNet.
Given this large information flow, it is not surprising that summary



Table 2. Error rates across ResNet sizes with non-linear context
mean error rate ± half range trainable

architecture (% improvement) MACs parameters
ResNet-18
a unchanged 30.18% ±0.09% 3.14 B 11.98 M
b with final NLPool 28.81% ±0.08% (4.5%) 3.14 B 12.19 M
c with NLConv 29.04% ±0.03% (3.8%) 3.45 B 12.38 M
d with both 28.66% ±0.18% (5.0%) 3.45 B 12.90 M
ResNet-34
a unchanged 26.42% ±0.06% 4.99 B 21.98 M
b with final NLPool 25.59% ±0.05% (3.1%) 4.99 B 22.30 M
c with NLConv 25.81% ±0.16% (2.3%) 5.41 B 23.05 M
d with both 25.43% ±0.14% (3.7%) 5.41 B 23.56 M
ResNet-50
a unchanged 23.52% ±0.07% 5.89 B 25.50 M
b with final NLPool 23.12% ±0.31% (1.9%) 5.89 B 27.55 M
c with NLConv 22.45% ±0.03% (4.5%) 8.10 B 32.60 M
d with both 22.38% ±0.42% (4.8%) 8.10 B 34.65 M
ResNet-101
a unchanged 21.44% ±0.09 9.60 B 44.44 M
b with final NLPool 20.99% ±0.14 (2.1%) 9.61 B 46.49 M
c with NLConv 21.46% ±0.07 (0.0%) 12.69 B 56.00 M
d with both 21.30% ±0.05 (0.7%) 12.69 B 58.05 M

statistics are not needed.
We also added NLConv to every convolution on the main path

(Figure 3), not just the first, while retaining the projection-block
shortcut paths. This did result in a slight reduction in the classifi-
cation error rate: from 22.45% ± 0.03% (Table 2, ResNet-50, line
c) down to 22.37% ± 0.08%. However, the improvement was not
statistically significant.

4.2. Ablations

In this section, we examine the relative effectiveness of NLConvs at
different locations within ResNet-50. Figure 5-a shows an expan-
sive set of results trading off accuracy and computation as we move
from an unmodified ResNet-50 to one that has NLConvs on 1, 2, 3
and 4 (all) stages of the network. For reference, the plot includes
a line between the unmodified ResNet-50 and the ResNet-50 with
all NLConvs. The higher the point above the line, the more ben-
eficial it is to keep. Importantly, note that all of the configurations
that provide this extra increase in accuracy include NLConvs in stage
4. Stage 4 has the largest representational pressure/loss and, consis-
tent with earlier observations, this is the most effective place to use
non-linearities.

Figure 5-b shows the change in accuracy and computation as we
add or remove NLConvs from different block types (projection or
identity) and from the two paths on the projection block (main path
or shortcut). The best tradeoffs in accuracy vs. computation occur
in configurations where NLConv is omitted from all shortcut paths
and when it is omitted from projection blocks (point marked “only
identity blocks”).

5. CONCLUSIONS

Adding non-linear context to convolutional blocks improved the ac-
curacy of ResNet-50 for all combinations of standard deviation, vari-
ance, and L1 distance, at a variety of context sizes, using either cen-
tered or sliding local means. Standard deviation with a centered local
mean and a 5×5 context was most effective, as was augmenting only
the first convolution on the main path of each block.

Fig. 5. Ablations for NLConv within ResNet-50.
Examining the effectiveness of NLConv (a) by stage and (b) by block type.

Global NLPool is used in parallel to the standard global aver-
age pool. It extends the context of the computations by calculating
the standard-deviation of the spatial samples. All sizes of ResNet
showed significant reductions in error rates when global NLPool was
added, with minimal increases in inference-time computation. The
effectiveness of global NLPool at this stage in the network is likely
related to the massive reduction in the size of the representation at
that layer (by a factor of 49): global NLPool allows otherwise hidden
spatial variations to be summarized and passed forward.

NLConv provides local non-linear context where 2D Convolu-
tions are used. Through an expansive set of experiments, we found
that NLConv is most effective where the convolutional bottlenecks
imposed by a limited number of channels (or resolution) remove use-
ful information. NLConv conveys efficient summaries that simply
expanding the width of the network by the same amount did not cap-
ture. NLConv, when combined with NLPool, led to 3.7% - 5.0% im-
provements on ImageNet with ResNet-18, 34 and 50. Both NLConv
and NLPool are simple to implement and require no modifications
in training algorithm or meta-parameter adjustment.

There are numerous directions for future work, both in alterna-
tives to our approach and the applications addressed. Within our
approach, questions remain as to why larger context did not further
improve performance. Second, the types of non-linearities employed
here were chosen for their simplicity; do other non-linearities, even
as simple as higher moments, also provide the same or supplemental
benefits? In terms of applications, the extra context provided by our
approach may be especially useful in domains in which spatial statis-
tics are exactly what is being modeled – such as video compression
and object segmentation.
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